close
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
def inference(input_tensor, avg_class, weights1,
biases1, weights2, biases2):
if avg_class is None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2
else:
layer1 = tf.nn.relu(
tf.matmul(input_tensor, avg_class.average(weights1) + avg_class.average(biases1)))
return tf.matmul(layer1, avg_class.average(weights2) + avg_class.average(biases2))
# 訓練模型的過程
def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [INPUT_NODE, OUTPUT_NODE], name='y-input')
# 生成隱藏層參數
weights1 = tf.Variable(
tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
# 生成輸出層參數
weights2 = tf.Variable(
tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
y = inference(x, None, weights1, biases1, weights2, biases2)
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(
tf.trainable_variables())
average_y = inference(
x, variable_averages, weights1, biases1, weights2, biases2)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(y, tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
regularizer = tf.contrib.layers.l2_trgularizer(REGULARIZATION_RATE)
regularization = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularization
learning_rate = tf.train.exponential_delay(
LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train')
correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 模型在這組數劇上的正確性
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images,
y_: mnist.validation. labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels}
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy"
"using average model is %g " % (i, validate_acc))
xs, ys = mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op, feed_dict={x: xs, y_: ys}) # 運行訓練過程
test_acc = sess.run(accuracy, feed_dict=test_feed)
print("After %d training step(s), test accuracy using average "
"model is %g " % (TRAINING_STEPS, test_acc))
# 主程序入口
def main(argv=None):
mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
train(mnist)
if __name__ == '__main__':
tf.app.run()
全站熱搜