目前分類:python (15)

瀏覽方式: 標題列表 簡短摘要

方法一

image

KR 發表在 痞客邦 留言(0) 人氣()

image

發生錯誤:

KR 發表在 痞客邦 留言(0) 人氣()

image


文章標籤

KR 發表在 痞客邦 留言(0) 人氣()

python是以main.py(包含__name__的檔案)作為搜索路徑之root

也就是說再main.py運行時,會加入搜索範圍的路徑皆以main.py所在之資料夾做為root

KR 發表在 痞客邦 留言(0) 人氣()

from fuzzysearch import find_near_matches
 

文章標籤

KR 發表在 痞客邦 留言(0) 人氣()

KR 發表在 痞客邦 留言(0) 人氣()

步驟一: 安裝vitrualenv

% cd 到你平常裝軟體的地方

KR 發表在 痞客邦 留言(0) 人氣()

安裝

KR 發表在 痞客邦 留言(0) 人氣()

  • Nov 30 Fri 2018 16:46
  • Logs

# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
# Youku video tutorial: http://i.youku.com/pythontutorial

KR 發表在 痞客邦 留言(0) 人氣()

import tensorflow as tf
import numpy as np


# 定義一個添加層的函數
def add_layer(inputs, input_tensors, output_tensors, activation_function=None):
    with tf.name_scope('Layer'):
        with tf.name_scope('Weights'):
            W = tf.Variable(tf.random_normal([input_tensors, output_tensors]))
        with tf.name_scope('Biases'):
            b = tf.Variable(tf.zeros([1, output_tensors]))
        with tf.name_scope('Formula'):
            formula = tf.add(tf.matmul(inputs, W), b)
        if activation_function is None:
            outputs = formula
        else:
            outputs = activation_function(formula)
        return outputs


# 準備資料
x_data = np.random.rand(100)
x_data = x_data.reshape(len(x_data), 1)
y_data = x_data * 0.1 + 0.3

# 建立 Feeds
with tf.name_scope('Inputs'):
    x_feeds = tf.placeholder(tf.float32, shape=[None, 1])
    y_feeds = tf.placeholder(tf.float32, shape=[None, 1])

# 添加 1 個隱藏層
hidden_layer = add_layer(x_feeds, input_tensors=1, output_tensors=10, activation_function=None)

# 添加 1 個輸出層
output_layer = add_layer(hidden_layer, input_tensors=10, output_tensors=1, activation_function=None)

# 定義 `loss` 與要使用的 Optimizer
with tf.name_scope('Loss'):
    loss = tf.reduce_mean(tf.square(y_feeds - output_layer))
with tf.name_scope('Train'):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
    train = optimizer.minimize(loss)

# 初始化 Graph
init = tf.global_variables_initializer()
sess = tf.Session()

# 將視覺化輸出
writer = tf.summary.FileWriter("TensorBoard/", sess.graph)


# 開始運算
sess.run(init)
for step in range(201):
    sess.run(train, feed_dict={x_feeds: x_data, y_feeds: y_data})
    # if step % 20 == 0:
    # print(sess.run(loss, feed_dict = {x_feeds: x_data, y_feeds: y_data}))

sess.close()

# 打開cmdcdtensorflow資料夾前一目錄
# $tensorboard --logdir=TensorBoard
import tensorflow as tf
import numpy as np


# 定義一個添加層的函數
def add_layer(inputs, input_tensors, output_tensors, activation_function=None):
    with tf.name_scope('Layer'):
        with tf.name_scope('Weights'):
            W = tf.Variable(tf.random_normal([input_tensors, output_tensors]))
        with tf.name_scope('Biases'):
            b = tf.Variable(tf.zeros([1, output_tensors]))
        with tf.name_scope('Formula'):
            formula = tf.add(tf.matmul(inputs, W), b)
        if activation_function is None:
            outputs = formula
        else:
            outputs = activation_function(formula)
        return outputs


# 準備資料
x_data = np.random.rand(100)
x_data = x_data.reshape(len(x_data), 1)
y_data = x_data * 0.1 + 0.3

# 建立 Feeds
with tf.name_scope('Inputs'):
    x_feeds = tf.placeholder(tf.float32, shape=[None, 1])
    y_feeds = tf.placeholder(tf.float32, shape=[None, 1])

# 添加 1 個隱藏層
hidden_layer = add_layer(x_feeds, input_tensors=1, output_tensors=10, activation_function=None)

# 添加 1 個輸出層
output_layer = add_layer(hidden_layer, input_tensors=10, output_tensors=1, activation_function=None)

# 定義 `loss` 與要使用的 Optimizer
with tf.name_scope('Loss'):
    loss = tf.reduce_mean(tf.square(y_feeds - output_layer))
with tf.name_scope('Train'):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
    train = optimizer.minimize(loss)

# 初始化 Graph
init = tf.global_variables_initializer()
sess = tf.Session()

# 將視覺化輸出
writer = tf.summary.FileWriter("TensorBoard/", sess.graph)


# 開始運算
sess.run(init)
for step in range(201):
    sess.run(train, feed_dict={x_feeds: x_data, y_feeds: y_data})
    # if step % 20 == 0:
    # print(sess.run(loss, feed_dict = {x_feeds: x_data, y_feeds: y_data}))

sess.close()

# 打開cmd,cd到tensorflow資料夾前一目錄
# $tensorboard --logdir=TensorBoard



KR 發表在 痞客邦 留言(0) 人氣()

'''
為了克服python基本運算緩慢的問題 
(因為 tensorflow 使用 GPU、多工 例:A+BTF算比C)
tensorflow 採用預先建構完整的運算式
再一起進行運算的方式
'''

import tensorflow as tf



# none 為任意數目,784 為每個樣本所含總pixelplaceholder 為預先空出喂資料的空間
x = tf.placeholder(tf.float32, [None, 784])  # input (mnist images)

# variable 在計算過程中可更改
W = tf.Variable(tf.zeros[784, 10])  # weight 10表示樣本各pixel在類別1~10的分別機率
b = tf.Variable(tf.zeros[10])  # bias
# softmax 在最後輸出前,整理神經網路結果(wx+b),使結果都介於 0~1 且相加為1
y = tf.nn.softmax(tf.matmul(x, W)+b)


# 訓練
# Loss(/Cost) 為目前訓練模型與實際模型的差,用來判斷模型好壞
# 使用 cross-entropy 來決定 loss function
y_ = tf.placeholder(tf.float32, [None, 10])  # 實際答案
cross_entropy = tf.reduce_mean()
'''
為了克服python基本運算緩慢的問題 
(因為 tensorflow 使用 GPU、多工 例:A+B用TF算比C慢)
tensorflow 採用預先建構完整的運算式
再一起進行運算的方式
'''

import tensorflow as tf



# none 為任意數目,784 為每個樣本所含總pixel,placeholder 為預先空出喂資料的空間
x = tf.placeholder(tf.float32, [None, 784])  # input (mnist images)

# variable 在計算過程中可更改
W = tf.Variable(tf.zeros[784, 10])  # weight ,10表示樣本各pixel在類別1~10的分別機率
b = tf.Variable(tf.zeros[10])  # bias
# softmax 在最後輸出前,整理神經網路結果(wx+b),使結果都介於 0~1 且相加為1
y = tf.nn.softmax(tf.matmul(x, W)+b)


# 訓練
# Loss(/Cost) 為目前訓練模型與實際模型的差,用來判斷模型好壞
# 使用 cross-entropy 來決定 loss function
y_ = tf.placeholder(tf.float32, [None, 10])  # 實際答案
cross_entropy = tf.reduce_mean()













KR 發表在 痞客邦 留言(0) 人氣()

import cv2


#  使用視訊鏡頭擷取影像
cv2.namedWindow("preview")
vc = cv2.VideoCapture(0)

if vc.isOpened(): # try to get the first frame
    rval, frame = vc.read()
else:
    rval = False

count = 0
while rval:
    cv2.imshow("preview", frame)  # 產生視窗
    rval, frame = vc.read()
    cv2.imwrite("frame%d.jpg" % count, frame)  # 將影格轉為 frame
    key = cv2.waitKey(100)  # 調整影格數
    if key == 27:  # esc停止
        break
    count += 1
cv2.destroyWindow("preview")
import cv2


#  使用視訊鏡頭擷取影像
cv2.namedWindow("preview")
vc = cv2.VideoCapture(0)

if vc.isOpened(): # try to get the first frame
    rval, frame = vc.read()
else:
    rval = False

count = 0
while rval:
    cv2.imshow("preview", frame)  # 產生視窗
    rval, frame = vc.read()
    cv2.imwrite("frame%d.jpg" % count, frame)  # 將影格轉為 frame
    key = cv2.waitKey(100)  # 調整影格數
    if key == 27:  # 按esc停止
        break
    count += 1
cv2.destroyWindow("preview")



KR 發表在 痞客邦 留言(0) 人氣()

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data


INPUT_NODE = 784
OUTPUT_NODE = 10

LAYER1_NODE = 500
BATCH_SIZE = 100

LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99

REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99


def inference(input_tensor, avg_class, weights1,
              biases1, weights2, biases2):
    if avg_class is None:
        layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
        return tf.matmul(layer1, weights2) + biases2
    else:
        layer1 = tf.nn.relu(
            tf.matmul(input_tensor, avg_class.average(weights1) + avg_class.average(biases1)))
        return tf.matmul(layer1, avg_class.average(weights2) + avg_class.average(biases2))


# 訓練模型的過程
def train(mnist):
    x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
    y_ = tf.placeholder(tf.float32, [INPUT_NODE, OUTPUT_NODE], name='y-input')

    # 生成隱藏層參數
    weights1 = tf.Variable(
        tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
    biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))

    # 生成輸出層參數
    weights2 = tf.Variable(
        tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
    biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))

    y = inference(x, None, weights1, biases1, weights2, biases2)

    global_step = tf.Variable(0, trainable=False)

    variable_averages = tf.train.ExponentialMovingAverage(
        MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(
        tf.trainable_variables())

    average_y = inference(
        x, variable_averages, weights1, biases1, weights2, biases2)

    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(y, tf.argmax(y_, 1))
    cross_entropy_mean = tf.reduce_mean(cross_entropy)

    regularizer = tf.contrib.layers.l2_trgularizer(REGULARIZATION_RATE)
    regularization = regularizer(weights1) + regularizer(weights2)
    loss = cross_entropy_mean + regularization

    learning_rate = tf.train.exponential_delay(
        LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE,
        LEARNING_RATE_DECAY)

    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)

    with tf.control_dependencies([train_step, variables_averages_op]):
        train_op = tf.no_op(name='train')

    correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  # 模型在這組數劇上的正確性

    with tf.Session() as sess:
        tf.global_variables_initializer().run()

        validate_feed = {x: mnist.validation.images,
                         y_: mnist.validation. labels}
        test_feed = {x: mnist.test.images, y_: mnist.test.labels}
        for i in range(TRAINING_STEPS):
            if i % 1000 == 0:
                validate_acc = sess.run(accuracy, feed_dict=validate_feed)
                print("After %d training step(s), validation accuracy"
                      "using average model is %g " % (i, validate_acc))

            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            sess.run(train_op, feed_dict={x: xs, y_: ys})  # 運行訓練過程

        test_acc = sess.run(accuracy, feed_dict=test_feed)
        print("After %d training step(s), test accuracy using average "
              "model is %g " % (TRAINING_STEPS, test_acc))


# 主程序入口
def main(argv=None):
    mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
    train(mnist)


if __name__ == '__main__':
    tf.app.run()


KR 發表在 痞客邦 留言(0) 人氣()



import matplotlib.pyplot as plt
import numpy as np

# 畫一個 0~180 度的 sin 波
x = np.arange(0, 180)
y = np.sin(x*np.pi/180.0)

plt.plot(x, y)

# 設定圖的範圍
plt.xlim(-30, 390)
plt.ylim(-1.5, 1.5)


plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.title("The title")

plt.show()


http://formatmysourcecode.blogspot.com/


KR 發表在 痞客邦 留言(0) 人氣()

index = 2

for index in range(10):
    print(index)

output:

0

文章標籤

KR 發表在 痞客邦 留言(0) 人氣()